
International Journal of Scientific & Engineering Research, Volume 3, Issue 9, September-2012
ISSN 229-5518

IJSER ©2012
http://ww.ijser.og

Performance Evaluation of Procedural

Cognitive Complexity Metric and Other

Code Based Complexity Metrics

Olabiyisi Stephen O., Omidiora Elijah O., and Isola Esther O.

Abstract: Software metrics are widely accepted tools to control and assure software quality. A large number of software metrics

with a variety of content can be found in the literature. In this paper, different software complexity metrics are applied to a set of
sorting algorithms Our intention is to study what kind of new information about the algorithms the complexity metrics (Procedural
Cognitive Complexity Metric, lines-of-code, Halstead’s volume, and Cyclomatic number) are able to give, to study which software

complexity measures are the most useful ones in algorithm comparison, and to analyze when the software complexity comparisons
are appropriate. The results explicitly revealed that the complexity metrics compare well with one another. Unfortunately, for
meaningful results, all the algorithms have to be developed in the same fashion which makes the comparison of independent

implementations difficult.

 Index Terms - Software Metrics, Sorting Algorithms, Procedural Cognitive Complexity Metric, Lines-Of-Code, Halstead’s Volume,

and Cyclomatic Number.

——————————  ——————————

1. INTRODUCTION
A wide range of activities is associated

with different phases of software development.

Software metrics are techniques/formulas to

measure some specific property or characteristics

of software. In software engineering, the term

‘software metrics’ is directly related to the

measurement. Software measurement has

significant role in the software management.

According to [1] ‚You can’t manage what you can’t

measure!‛. Campbell also emphasized the

importance of measurement in software

management by stating, ‚If you ain’t measuring,

you ain’t managing and you’re only along for the

ride (downhill)!‛ .At this point it is worth to define

‘measurement’ itself. [2] defines measurement as

the process by which numbers or symbols are

assigned to attributes of entities in the real world in

such a way as to describe them according to

clearly defined rules .

Software metrics are a quantitative guide

to the performance of a certain piece of software in

relation to the human interactions needed to make

the software work. Metrics have been established

under the idea that before something can be

measured or quantified, it needs to be translated

into numbers. There are several areas where

software metrics are found to be of use. These

areas include everything from software planning to

the steps that are meant to improve the

performance of certain software. Software cannot

perform on its own without human interaction.

Therefore, in a way, software metric is also a

measure of a person's relation to the software that

he or she is handling. Software systems are

complex. Therefore, it is hard to attain a high level

of quality. Software metrics have always been an

important tool since it was realised that software

development is a complex task. Due to its

complexity, software quality has been a rising

demand for decades and some definitions have

been manifested throughout software history. A

software product should carry several quality

attributes, such as correctness, reliability,

efficiency, integrity, usability, maintainability,

testability, flexibility, portability, reusability, and

interoperability [3]. According to [4] the most

necessary software quality attribute is

maintainability. To efficiently be able to maintain a

software system, the codes should be

understandable for developers, and to achieve high

quality, reduction of complexity is essential. To

deal with software complexity, software metrics

are used. Metrics are indicators of complexity; they

expose several weaknesses of a complex software

system. Therefore, by the means of software

metrics, quality can be estimated. That is why

International Journal of Scientific & Engineering Research, Volume 3, Issue 9, September-2012
ISSN 229-5518

IJSER ©2012
http://ww.ijser.og

metrics take an indispensable role in software

development life cycle. Moreover, most of the

available metrics do not consider the cognitive

characteristics in calculating the complexity of a

code, which directly affects the cognitive

complexity. If a code has a low cognitive

complexity, programmer can easily grasp the code

without wasting too much time. High cognitive

complexity indicates poor design which performs

the task. If the interacting entity is a programmer,

then complexity is related to the factors and

metrics that are used in this research are associated

with procedural paradigm.

The various popular metrics for procedural

programming languages are under several

criticisms. These criticisms are mainly based on

lack in desirable measurement properties, being

too labour- intensive to collect and only confined to

the features of procedural languages. Most of the

available metrics cover only certain features of a

language. For example, if Line of Code is applied,

then only size will be considered, if MCcabe

complexity is applied the control flow of the

program will be applied. Moreover, most of the

available metrics do not consider the cognitive

characteristics in calculating the complexity of

code. Hence, [5] proposed a metric for procedural

programming language called Procedural

Cognitive Complexity Metric (PCCM) that address

most of the parameters of software. This paper

attempts to evaluate the performance of the metric

with the existing ones using sorting algorithms.

2. EXISTING CODE BASED COMPLEXITY

MEASURES [6] [7]

2.1 Halstead Complexity Measure [6]

Maurice Halstead proposed this measure

which is based on the principle of Count of

Operators and Operand and their respective

occurrences in the code. These operators and

operands are to be considered for the formation of

Length and Vocabulary of Program. Further

Program Length and Vocabulary serve as basis for

finding out Volume, Potential Volume, Estimated

Program length, Difficulty and finally effort and

time by using following formulae.

Program Vocabulary, n = n1+n2

Program Length, N = N1+ N2

Volume, V= N*log2n

Estimated Program Length N^ = n1 log2 n1 + n2

log2 n2

Potential Volume, V* =(2+n2*)log2(2+n2*)

Program Level, L = V*/V

Effort, E =V/L in elementary mental

discriminations

Reasonable Time, T = E/B min

Difficulty = 1/language level

Now the problem with this method is that, they are

difficult to compute. It is not suited when we want

fast and easy computation, because to count

distinct operand and operator is not easy job.

Specifically when there are large programs.

2.2 Mac Cabe’s Cyclometric Complexity [7]

One of the better known and graphic

metrics is Cyclometric Complexity developed by

Thomas J Mc Cabe in 1976. His fundamental

assumption was that software complexity is

intimately related to the number of control paths

generated by the code. The metric can be defined

in two equivalent ways.

The number of decision statement in a program + 1

Or for a graph G with n vertices, e edges and p

connected components,

v(G) = e-n+2p

Finally number of branches can be counted from

the graph. The McCabe complexity C can be

defined as:

 C = 1 + (1)

The difficulty with McCabe Complexity is that, the

complexity of an expression with in a conditional

statement is never acknowledged. Also there is no

penalty for embedded loops versus a series of

single loops; both have the same complexity.

2.3 Line of Code

This metric considers on the number of lines of

code inside a program. Some types of Line of Code

are [8] :

(i) Lines of Code (LOC): Counts every line

including comments and blank lines.

(ii) Kilo Lines of Code (KLOC): It is LOC

divided by 1000.

International Journal of Scientific & Engineering Research, Volume 3, Issue 9, September-2012
ISSN 229-5518

IJSER ©2012
http://ww.ijser.og

(iii) Effective Lines of Code (eLOC): Estimates

effective line of code excluding

parenthesis, blanks and comments.

(iv) Logical Lines of Code (lLOC): Estimates

only the lines which form statements of a

code. For example, in C, the statements

which end with semi-colon are counted to

be lLOC.

 This type of measurement is highly dependent on

programming languages. A code written in Java

may be much more effective than C. Two programs

that give the same functionalities written in two

different languages may have very different LOC

values. The advantage of LOC is its ease of

calculation, though it neglects all other factors that

affect the complexity of software, such as the name

of variables, classes, structures, coupling, cohesion,

inheritance, and so on [9].

2.4 Procedural Cognitive Complexity Measure

Accordingly to [5] the total complexity in

terms Procedural Cognitive Complexity Measure is

given by the following formula:

)2(CWU*operatorsMNV)ANV*(4PCCM
n

1I

ij

mi

1j

Here, the complexity measure of a procedural code

(PCCM) is defined as the sum of

complexity of its n modules (if exists) and module I

consists of mi lines of code. In the

context of formula 1, the concept of cognitive

weights is used as an integer multiplier.

Therefore, the unit of the PCCM is: CWU which is

always a positive integer number.

This implies achievement of scale compatibility.

This logic was derived from Unified

Complexity Measure [10]. Cognitive differences of

variables were added inside the

metric.

3. MATERIALS AND METHODS

The metrics are applied on some sorting

algorithms codes which are written in C language.

Ten(10) different types of sorting algorithms codes

were considered. These programs were different

from each other in their architecture, the

calculations of PCCM for these sorting algorithms

are given in Table 3.5 to 3.14. The structures of all

the 10 programs in tables are as follows: The

second column of the tables shows the C codes.

The sum of Arbitrarily Named Variables (ANV),

the Meaningfully Named Variables (MNV) and the

operators in the line is given in the third column of

the table. The cognitive weights of each C codes

lines are presented in the forth column. The C

complexity calculation measure for each line is

shown in the last column of Tables 3.5 to 3.14 and

Table 3.15 shows the PCCM result of the ten (10)

different sorting algorithms code.

4. RESULTS AND DISSCUSSION

For empirical validation of the PCCM metric, ten

sorting algorithm codes written in C were

analysed. It is believed that the selected ten sorting

algorithm codes are significant in number for

comparison since they include different structures

and, therefore, contain most of the characteristics

of a system required for the validation of the

proposed measure. The complexity values of

different measures for the cases are summarised in

Table 4.1. Table 4.1 contains the statistics that are

collected after analysing those C codes to evaluate

the PCCM measures. Actually, the agenda of

empirical validation is two-fold. First, the well

known metrics like effective Lines of Code (eLOC),

Cyclomatic Complexity (CC) and volume, effort,

difficulty and time estimations from Halstead

metrics were all applied. Second, the statistics that

are collected from those metrics was compared

with the values obtained from PCCM to investigate

the usefulness and effectiveness of the proposal.

TABLE 1

International Journal of Scientific & Engineering Research, Volume 3, Issue 9, September-2012
ISSN 229-5518

IJSER ©2012
http://ww.ijser.og

COMPARISON OF THE PCCM, ELOC, CC AND

HALSTEAD METRICS

Fig.1, shows comparison result between the

effective line of code (eLOC) and PCCM. It is clear

that PCCM values are normally higher than eLOC.

This is because PCCM consists of complexity

values due to other parameters/factors responsible

for complexity. In other words, PCCM calculates

more factors than eLOC. However, there is not a

conflict or opposition between PCCM and eLOC.

In Fig. 2, CC attempts to determine the number of

execution paths in a program. Therefore, on the

contrary to the proposed measure, it does not

consider variables, difference between variables,

operator or constants. For instance CC value for

program Quick, Heap, Merge and Counting Sort

are equal (CC=7). However, PCCM does not only

consider the factors related with variable and

operators but also complexity due to internal

structure. The PCCM value for the aforementioned

programs are 116, 265, 228 and 610 respectively,

which is able to indicate the complexity differences

between programs and therefore provide more

information.

A graph which covers the comparison between CC,

eLOC and PCCM is also plotted in Fig. 3, to

observe similarities and differences between them.

A close inspection of the graph shows that PCCM

has close relation with CC and eLOC. This can

easily be seen in the figure below, in which PCCM,

CC and eLOC reflect similar trends. In other

words, high PCCM values are due to a large

number of variables. (arbitrarily named variables),

a number of iterations or branching structure. For

example: PCCM has the highest vale for Radix Sort

(733), which is due to having the maximum line of

code (38), variables and complex control

structure.The similarities that lies between them is

the harmony between their increase and decrease.

The difference is that some of the programs are

showed by eLOC or CC having almost the same

complexity. On the other hand PCCM is able to

catch the differences even if they are hidden in

details and therefore, give more prominent

reactions.

Sorting algorithms

Fig. 1. Comparison between eLOC and PCCM

0

100

200

300

400

500

600

700

800
B

u
b

b
le

 s
o

rt

In
se

rt
io

n
 s

o
rt

Se
le

ct
io

n
 …

Sh
el

l s
o

rt

Q
u

ic
k

so
rt

H
ea

p
 s

o
rt

M
e

rg
e

so
rt

B
u

ck
et

 s
o

rt

C
o

u
n

ti
n

g
so

rt

R
ad

ix
 s

o
rt

eLOC

PCCM

SORTING

ALGORITHM

TECHNIQUES PCCM eLOC CC

 Halstead

V D E T

Bubble sort 181 8 4 172 17 2924 162

Insertion sort 148 9 3 164 14 2296 128

Selection sort 209 11 4 175 12 2100 117

Shell sort 188 17 5 299 24 7176 399

Quick sort 116 24 7 367 42 15414 856

Heap sort 265 26 7 511 45 22950 1275

Merge sort 228 34 7 633 32 20256 1125

Bucket sort 550 28 8 332 30 9960 553

Counting sort 610 23 7 428 20 8560 476

Radix sort 733 38 10 642 10 640 357

International Journal of Scientific & Engineering Research, Volume 3, Issue 9, September-2012
ISSN 229-5518

IJSER ©2012
http://ww.ijser.og

Sorting algorithms

Fig. 2. Comparison between CC and PCCM

Sorting

Sorting algorithms

Fig. 3. Relative Graph between eLOC, CC and

PCCM

In Fig. 4, comparison between eLOC,

PCCM and Halstead Volume is given. Logically,

there should be similarities between eLOC and

Halstead Volume. However, here PCCM and

eLOC values are more similar to each other.

Halstead Volume has exaggerated values as shown

in the graph. The programs are not extremely

different in their size and understanding, but

according to Halstead Volume they are. It is

observed in Fig. 5 that PCCM has similar trends

with Halstead Time. Halstead Time measurement

is approximately the time spent to understand a

program and PCCM reflects the similar values to

this measurement. This proves that the proposed

metric is a strong predictor of comprehensibility.

Despite the similarity of PCCM and Halstead

Time, none of Halstead’s metrics was capable of

measuring the structural complexity of a program.

In Fig. 6, the demonstration of the comparison of

CC, PCCM and Halstead Difficulty. Halstead

Difficulty of a program should have some relation

with CC. Halstead Difficulty and CC values are

more or less similar but in some cases they may be

contradictory. PCCM is able to make more

sensitive measurements than CC and this graph

also shows the difference that exists between

PCCM and Halstead Difficulty too.

In Fig. 7, all the values remain tiny before

Halstead Effort. Effort spent to develop a program

should have some correlations with eLOC, CC,

PCCM and Halstead Time. Effective line of code

varies from 8 to 38, but Halstead Effort values

changes between 2100 and 22950. There are some

contradictions also. For example program Heap

sort has 26 eLOC with Halstead Effort of 22950

while program Radix sort has 38 eLOC with

Halstead Effort of 6420 this does not seem to be an

effective measurement to understand how much

difficult the program is to be understood by a

human. For the given examples the Halstead Effort

values are too exaggerated and have some

contradictions with eLOC, CC and even with

Halstead Time. It was expected that atleast, it

could have a relationship with CC, because if a

code is extremely complex, then most probably it

consists of a vast number of control paths [11].

0

100

200

300

400

500

600

700

800

B
u

b
b

le
 s

o
rt

In
se

rt
io

n
 s

o
rt

Se
le

ct
io

n
 s

o
rt

Sh
el

l s
o

rt

Q
u

ic
k

so
rt

H
ea

p
 s

o
rt

M
e

rg
e

so
rt

B
u

ck
et

 s
o

rt

C
o

u
n

ti
n

g
so

rt

R
ad

ix
 s

o
rt

CC

PCCM

0

100

200

300

400

500

600

700

800

eLOC

CC

PCCM

International Journal of Scientific & Engineering Research, Volume 3, Issue 9, September-2012
ISSN 229-5518

IJSER ©2012
http://ww.ijser.og

Sorting algorithms

Fig .4. Relative Graph between eLOC, PCCM and

Halstead Volume

Sorting algorithms

Fig. 5. Relative graph between Halstead Time and

PCCM

Sorting algorithms

Fig. 6. Relative Graph between CC, PCCM and

Halstead Difficulty.

Sorting algorithms

Fig .7. Relative Graph between eLOC, CC, PCCM,

Halstead Effort and Halstead Time

0

100

200

300

400

500

600

700

800

eLOC

PCCM

V

0

200

400

600

800

1000

1200

1400

PCCM

T

0

100

200

300

400

500

600

700

800

CC

PCCM

D

0

5000

10000

15000

20000

25000

PCCM

eLOC

CC

E

T

International Journal of Scientific & Engineering Research, Volume 3, Issue 9, September-2012
ISSN 229-5518

IJSER ©2012
http://ww.ijser.og

 5. CONLUSSION

 In this study, performance comparison of various

code based complexity metric was carried out

using ten(10) sorting algorithms written in C

language. The comparative inspection of the

implementation of PCCM versus eLOC, CC, and

Halstead has shown that:

(i) PCCM makes more sensitive

measurement, so that it enables

developers to differentiate even small

complexity differences among codes.

(ii) Halstead’s assumptions may

sometimes mislead developers,

whereas PCCM has the least amount

of assumptions and those

assumptions are based on cognitive

aspects.

(iii) CC was not able to make sensitive

measurement; most of the similar

codes had the same CC values.

Similarly, for eLOC, for being based

on the lines of code, cannot

distinguish different structures. Of a

fact empirical validations have shown

that PCCM was able to handle those

issues.

(iv) Among the specified metrics only

PCCM includes cognitive effects and

also has a dynamic structure.

References

[1] DeMarco, T (1986): Controlling Software
Projects, Yourdon Press, New York.

[2] Fenton, N. E. and Pfleeger, S. (1997):

Software Metrics: A Rigorous and Practical

Approach, 2nd Edition Revised ed.

Boston: PWS Publishing, City Univ,

London,20(3):199-206.

[3] Pfleeger, S. L and Atlee, J. M (2006): Software

Engineering – Theory and Practice, 3rd

International Edition, Prentice Hall.

[4] Sommerville, I. (2004): Software Engineering,

7th Edition, Addison Wesley.

[5] E.O.Isola (2012), ‘’An improved software
complexity metric for procedural

programming languages,’’ Unpublished

M.Tech Thesis,Department of Computer

Science, LAUTECH, Ogbomoso,Nigeria.

[6] Halstead, M.H., Elements of Software Science,

Elsevier North, New York,1977.

[7] Mc Cabe, T.H., A Complexity measure, IEEE

Transactions on Software Engineering, SE-2,6,

pp. 308- 320, 1976

[8] Resource Standard Metrics. (last accessed

18.02.2010). Available at:

http://msquaredtechnologies.com/m2rsm/docs/rsm

_metrics_narration.htm

 [9] Anthon Milutin (2009): ‚Software code

metrics’’, ACM Sigsoft, 18(2): 102-104.

[10] Misra, S. and Akman, I. (2008): A Model for

Measuring Cognitive Complexity of Software,

Springer-Verlag Berlin Heidelberg.

[11] Marco, L.: Measuring Software Complexity

(last accessed. 23.02.2010).

